

Labor Kneißler GmbH & Co. KG - Unterer Mühlweg 10 - 93133 Burglengenfeld

Stadtwerke Burglengenfeld Christoph-Willibald-Gluck-Str. 16 93133 Burglengenfeld

Analytik von Lebensmitteln, Trinkwasser, Kosmetika, Bedarfsgegenständen und Futtermitteln

Trinkwasserlabor nach § 15 Abs. 4 der TrinkwV

Zulassung nach § 44 Infektionsschutzgesetz

Zulassung für amtliche Gegenproben nach § 43 LFGB

Erlaubnis zum Arbeiten mit Tierseuchenerregern nach § 2 Abs. 1 TierSeuchErV

Benennung als amtliches Labor nach Art. 37 Abs. 1 der Verordnung (EU) 2018/625

Die Akkreditierung gilt für den in der Urkundenanlage festgelegten Geltungsbereich.

Burglengenfeld, 20.05.2022

Prüfbericht

Prüfberichtsnummer: 22-0410263/1
Probennummer: 22-0410263/1

Projekt: Trinkwasseruntersuchung
Probenahme durch: M. Emmerich, Labor Kneißler

Eingangsdatum: 21.04.2022
Untersuchungsbeginn: 21.04.2022
Untersuchungsende: 19.05.2022
Probenart: Trinkwasser
Einsender: Stadtwerke BUL

Probenahmeort: Öffentl. WV Burglengenfeld

Entnahmestelle: Burglengenfeld, Mischbauwerk, Rohrkeller, PN-Hahn

LfW-Objektkennzahl: 1230 6838 00033 **Probenahmedatum:** 21.04.2022, 15:00

Untersuchung auf Pflanzenschutzmittel (Paket: Getreide, Mais, Raps, Rüben, Feldfutter, Grünland)

Parameter	Einheit	Ergebnis	GW	Verfahren
Atrazin	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Desethylatrazin	µg/l	0,053	0,10	DIN 38407-36:2014-09 (F36)
Desethylterbutylazin	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Diuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Ethidimuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Simazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
alpha-Cypermethrin	µg/l	<0,01	0,10	DIN 38407-37:2013-11 (F37)
Azoxystrobin	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Bentazon	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Boscalid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Bromoxynil	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Chlorthalonil	μg/l	<0,009	0,10	DIN 38407-37:2013-11 (F37)
Clothianidin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Chlortoluron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Clomazone	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)

Seite 1 von 3 zu Prüfbericht 22-0410263/1

Die Prüfergebnisse beziehen sich ausschließlich auf den untersuchten Anteil der Proben.

Eine auszugsweise Veröffentlichung oder Vervielfältigung ist nur mit Genehmigung des Instituts erlaubt.

Untersuchung auf Pflanzenschutzmittel (Paket: Getreide, Mais, Raps, Rüben, Feldfutter, Grünland)

Parameter	Einheit	Ergebnis	GW	Verfahren
Cyproconazol	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Chloridazon	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dicamba	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dichlorprop-P	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Difenoconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Diflufenican	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethachlor	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethenamid-P	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimethoat	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Dimoxystrobin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Epoxiconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fenoxaprop	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Ethofumesat	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fenpropidin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fenpropimorph	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Florasulam	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Flufenacet	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Fluroxypyr	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Flurtamone	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Glyphosat	μg/l	<0,03 *	0,10	ISO 16308:2014-09
Imidacloprid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
lodosulfuron-methyl	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Isoproturon	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Kresoxim-methyl	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
lambda-Cyhalothrin	μg/l	<0,02	0,10	DIN 38407-37:2013-11 (F37)
MCPA	μg/l	<0,013	0,10	DIN 38407-36:2014-09 (F36)
Mesotrione	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metazachlor	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metolachlor-S	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Napropamid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Metamitron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Nicosulfuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Pendimethalin		<0,02	0,10	DIN 38407-37:2013-11 (F37)
Pethoxamid	μg/l μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Propiconazol		<0,02	0,10	DIN 38407-36:2014-09 (F36)
Prosulfocarb	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Prosulfuron	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
	µg/l			DIN 38407-36:2014-09 (F36)
Prothioconazol	µg/l	<0,03 <0,02	0,10	DIN 38407-36:2014-09 (F36)
Pymetrozin	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Pyraclostrobin	µg/l			DIN 38407-36:2014-09 (F36)
Quinmerac	µg/l	<0,02	0,10	
Quinoxyfen	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Rimsulfuron	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Spiroxamine	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Tebuconazol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Trifloxystrobin	µg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Terbutylazin	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Thiacloprid	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Triadimenol	μg/l	<0,02	0,10	DIN 38407-36:2014-09 (F36)
Summe der untersuchten Pflanzenschutzmittel	μg/l	0,053	0,50	Berechnet

Fußnoten

* Der angegebene Wert entspricht der Bestimmungsgrenze

Verantwortliche Prüfleiter

Dr. Nicole Meißner, staatl. gepr. Lebensmittelchemikerin

Analytik auf Pflanzenschutzmittelrückstände

Verantwortlich für Prüfbericht/Beurteilung

Dr. Stefan Dorsch, Diplom-Chemiker

Weitere Informationen zum Prüfbericht finden Sie unter:

http://kis.labor-kneissler.de/pbinfos/2022-05-19

Dieses Dokument ist maschinell erstellt und auch ohne Unterschrift gültig. Bezüglich der Entscheidungsregel verweisen wir auf die aktuellen AGBs.

Anlagen: 1 Seite(n)

Beurteilung als Anlage zum Prüfbericht 22-0410263/1

Das untersuchte Wasser entspricht zum Zeitpunkt der Probenahme bzgl. der untersuchten Parameter den Anforderungen der Trinkwasserverordnung (TrinkwV) in der aktuell gültigen Fassung.

GW: Grenzwert gem. TrinkwV

Analytik von Lebensmitteln, Trinkwasser, Kosmetika, Bedarfsgegenständen und Futtermitteln

Trinkwasserlabor nach § 15 Abs. 4 der TrinkwV Zulassung nach § 44 Infektionsschutzgesetz

Zulassung für amtliche Gegenproben nach § 43 LFGB

Erlaubnis zum Arbeiten mit Tierseuchenerregern nach § 2 Abs. 1 TierSeuchErV

Benennung als amtliches Labor nach Art. 37 Abs. 1 der Verordnung (EU) 2018/625

Die Akkreditierung gilt für den in der Urkundenanlage festgelegten Geltungsbereich.

Burglengenfeld, 20.05.2022

Labor Kneißler GmbH & Co. KG - Unterer Mühlweg 10 - 93133 Burglengenfeld

Stadtwerke Burglengenfeld Christoph-Willibald-Gluck-Str. 16 93133 Burglengenfeld

Prüfbericht

Prüfberichtsnummer: 22-0410263 Probennummer: 22-0410263

Projekt: Trinkwasseruntersuchung
Probenahme durch: M. Emmerich, Labor Kneißler

Eingangsdatum: 21.04.2022
Untersuchungsbeginn: 21.04.2022
Untersuchungsende: 11.05.2022
Probenart: Trinkwasser
Einsender: Stadtwerke BUL

Verteiler: Gesundheitsamt Schwandorf (SEBAM)

Probenahmeort: Öffentl. WV Burglengenfeld

Entnahmestelle: Burglengenfeld, Mischbauwerk, Rohrkeller, PN-Hahn

LfW-Objektkennzahl: 1230 6838 00033 **Probenahmedatum:** 21.04.2022, 15:00

Angaben zur Probenahme

Parameter	Einheit	Ergebnis	GW	Verfahren
Probenahme		х		DIN ISO 5667-5: 2011-02 (A4)
Probenahmezweck nach EN ISO 19458		Α	1/	EN ISO 19458: 2006-08 (K19)
Desinfektion der Probenahmestelle		thermisch		EN ISO 19458: 2006-08 (K19)

Trinkwasserverordnung: Parameter der Gruppe A

Parameter	Einheit	Ergebnis	GW	Verfahren
Wassertemperatur (vor Ort)	°C	9,5		DIN 38404-4:1976-12 (C4)
Koloniezahl bei 22 °C	KBE/ml	0	100	TrinkwV § 15 (1c) 2018-01
Koloniezahl bei 36 °C	KBE/ml	0	100	TrinkwV § 15 (1c) 2018-01
Coliforme Bakterien	KBE/100 ml	0	0	DIN EN ISO 9308-2:2014-06
Escherichia coli	KBE/100 ml	0	0	DIN EN ISO 9308-2:2014-06
Enterokokken	KBE/100 ml	0	0	DIN EN ISO 7899-2:2000-11
pH-Wert (vor Ort)		7,4	6,5 - 9,5	DIN EN ISO 10523: 2012-04 (C5)

Seite 1 von 4 zu Prüfbericht 22-0410263

Die Prüfergebnisse beziehen sich ausschließlich auf den untersuchten Anteil der Proben.

Eine auszugsweise Veröffentlichung oder Vervielfältigung ist nur mit Genehmigung des Instituts erlaubt.

Trinkwasserverordnung: Parameter der Gruppe A

Parameter	Einheit	Ergebnis	GW	Verfahren
elektrische Leitfähigkeit bei 25 °C (vor Ort)	μS/cm	860	2790	DIN EN 27888: 1993-11 (C8)
Färbung (spektraler Absorptionskoeffizient bei 436 nm)	m-1	<0,1	0,5	DIN EN ISO 7887 - Verfahren B: 2012-04 (C1)
Trübung, quantitativ	NTU	0,3	1,0	DIN EN ISO 7027-1:2016-11 (C 21)
Geruch (organoleptisch, vor Ort)		ohne	ohne anormale Veränderung	DIN EN 1622 - Anhang C: 2006-10 (B3)
Geschmack (organoleptisch, vor Ort)		ohne	ohne anormale Veränderung	DEV B1/2 Teil a: 1971

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil I

Parameter	Einheit	Ergebnis	GW	Verfahren
Benzol	μg/l	<0,25 *	1,0	DIN 38407-43:2014 (F43)
Bor	mg/l	<0,06	1,0	DIN EN ISO 17294-2: 2005-02 (E29)
Bromat	mg/l	<0,0005 *	0,010	QMAA-IA-91:2020-01 (LC- MS/MS)
Chrom	mg/l	<0,0004	0,050	DIN EN ISO 17294-2: 2005-02 (E29)
Cyanid, gesamt	mg/l	<0,005	0,050	DIN EN ISO 14403-2:2012-10 (D 3)
1,2 Dichlorethan	μg/l	<0,3 *	3,0	DIN 38407-43:2014 (F43)
Fluorid ¹	mg/l	<0,1 *	1,5	DIN EN ISO 10304-1:2009-07 (D20)
Nitrat	mg/l	30	50	DIN EN ISO 10304-1:2009-07 (D20)
Parameter Nitrat/50 + Nitrit/3 (berechnet)	mg/l	0,600	1	berechnet
Quecksilber	mg/l	<0,00002 *	0,0010	DIN EN ISO 17294-2: 2005-02 (E29), modifiziert
Selen	mg/l	0,0006	0,010	DIN EN ISO 17294-2: 2005-02 (E29)
Trichlorethen	μg/l	<1 *	10,0	DIN 38407-43:2014 (F43)
Tetrachlorethen	μg/l	<1	10,0	DIN 38407-43:2014 (F43)
Summe aus Trichlorethen und Tetrachlorethen	µg/l	0	10,0	DIN 38407-43:2014 (F43)
Uran	μg/l	0,3	10,0	DIN EN ISO 17294-2: 2005-02 (E29)

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil II

Parameter	Einheit	Ergebnis	GW	Verfahren
Antimon	mg/l	<0,0001	0,0050	DIN EN ISO 17294-2: 2005-02 (E29)
Arsen	mg/l	0,0002	0,010	DIN EN ISO 17294-2: 2005-02 (E29)
Benzo(a)-pyren	μg/l	<0,0025 *	0,010	DIN 38407-39:2011-09 (F39)
Blei	mg/l	<0,0003	0,010	DIN EN ISO 17294-2: 2005-02 (E29)
Cadmium	mg/l	<0,0001	0,0030	DIN EN ISO 17294-2: 2005-02 (E29)
Kupfer	mg/l	<0,004	2,0	DIN EN ISO 17294-2: 2005-02 (E29)
Nickel	mg/l	0,0005	0,020	DIN EN ISO 17294-2: 2005-02 (E29)

Trinkwasserverordnung: Parameter Gruppe B: Anlage 2 Teil II

Parameter	Einheit	Ergebnis	GW	Verfahren
Nitrit	mg/l	<0,05	0,50	DIN EN ISO 13395:1996-12 (D 28)
Benzo-(b)-fluoranthen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Benzo-(k)-fluoranthen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Benzo-(ghi)-perylen	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Indeno(1,2,3-cd)-pyren	μg/l	<0,025 *		DIN 38407-39:2011-09 (F39)
Summe polycyclische aromatische Kohlenwasserstoffe	μg/l	0	0,10	DIN 38407-39:2011-09 (F39)

Trinkwasserverordnung: Parameter Gruppe B. Anlage 3 Teil I (Indikatorparameter)

Parameter	Einheit	Ergebnis	GW	Verfahren
Aluminium	mg/l	<0,004	0,200	DIN EN ISO 17294-2: 2005-02 (E29)
Ammonium	mg/l	<0,05	0,50	DIN EN ISO 11732:2005-05 (E 23)
Chlorid	mg/l	59	250	DIN EN ISO 10304-1:2009-07 (D20)
Eisen	mg/l	<0,004	0,200	DIN EN ISO 17294-2: 2005-02 (E29), Kollisionszelle
Mangan	mg/l	0,0001	0,050	DIN EN ISO 17294-2: 2005-02 (E29)
Natrium	mg/l	15,6	200	DIN EN ISO 17294-2: 2005-02 (E29)
Gesamter organischer Kohlenstoff (TOC)	mg/l	0,62	ohne anormale Veränderung	DIN EN 1484: 2019-04 (H 3)
Sulfat	mg/l	110	250	DIN EN ISO 10304-1:2009-07 (D20)

Trinkwasserverodnung: Parameter Gruppe B: korrosionschemische Untersuchung

Parameter	Einheit	Ergebnis	GW	Verfahren
Säurekapazität bis pH 8,2	mmol/l	0,0		DIN 38409: 2005-12 (H7-1)
Säurekapazität bis pH 4,3	mmol/l	4,7		DIN 38409: 2005-12 (H7-2)
Basenkapazität bis pH 8,2	mmol/l	0,45		DIN 38409: 2005-12 (H7-4-1)
Calcium	mg/l	137		DIN EN ISO 17294-2: 2005-02 (E29)
Magnesium	mg/l	16,8		DIN EN ISO 17294-2: 2005-02 (E29)
Kalium	mg/l	1,48		DIN EN ISO 17294-2: 2005-02 (E29)
Calcitlösekapazität	mg/l	-17,0	5	DIN 38404-10: 2012-12 (C10)
Gesamthärte als CaCO3	mmol/l	4,11		DIN 38409-6: 1986-01 (H6)
Gesamthärte	°dH	23,01		DIN 38409-6: 1986-01 (H6)
Härtebereich nach WRMG		hart		berechnet
Kohlensäure, frei (CO2)	mg/l	20,47		Berechnet
Kohlensäure, zugehörig (CO2)	mg/l	20,47		Berechnet
Kohlensäure, überschüssig (CO2)	mg/l	0,00		Berechnet
Korrosionsquotient (S1)		0,97	<0,5	berechnet
Anionenquotient (S2)		8,17	<1 bzw.>3	berechnet
Kupferquotient (S)		4,02	>1,5	berechnet

Fußnoten

Seite 3 von 4 zu Prüfbericht 22-0410263

Verantwortliche Prüfleiter

Caroline Nolten, Master of Science, Mikrobiologie
Dr. Nicole Meißner, staatl. gepr. Lebensmittelchemikerin
Dr. Thomas Hofmann, staatl. gepr. Diplom-Lebensmittelchemiker
Sabina Fischer, Master of Science, Agrarwissenschaften
Simone Bäumler, Master of Science, Chemie

Mikrobiologie Elementanalytik Gaschromatographie Chemie Flüssigchromatographie Ionenchromatographie

Verantwortlich für Prüfbericht/Beurteilung

Dr. Stefan Dorsch, Diplom-Chemiker

Weitere Informationen zum Prüfbericht finden Sie unter:

http://kis.labor-kneissler.de/pbinfos/2022-05-11

Dieses Dokument ist maschinell erstellt und auch ohne Unterschrift gültig. Bezüglich der Entscheidungsregel verweisen wir auf die aktuellen AGBs.

Anlagen: 3 Seite(n)

¹ Analytik von Partnerlabor durchgeführt, Parameter akkreditiert

^{*} Der angegebene Wert entspricht der Bestimmungsgrenze

Beurteilung als Anlage zum Prüfbericht 22-0410263

Die Untersuchungsergebnisse entsprechen zum Zeitpunkt der Probenahme den Anforderungen der TrinkwV (TrinkwV) in der aktuell gültigen Fassung.

Die Probe ist zum Zeitpunkt der Probenahme hinsichtlich der untersuchten Parameter bakteriologisch einwandfrei.

Für die untersuchten chemischen Parameter liegen keine Überschreitungen der Grenzwerte vor. Für die Indikatorparameter werden die Anforderungen eingehalten bzw. die Grenzwerte unterschritten. Die Korrosionsquotienten nach DIN EN 12502 und DIN 50930 S₂ und S sind unauffällig.

Das untersuchte Trinkwasser weist einen Härtegrad von 4,11 mmol auf und ist damit nach WRMG dem Härtebereich hart zuzuordnen.

Korrosionsquotienten nach DIN EN 12502 und DIN 50930:

 S_1 : Die Wahrscheinlichkeit der ungleichmäßigen Flächenkorrosion unter Ausbildung von Mulden- und Lochfraß ist bei niedrig- und unlegierten sowie schmelztauchverzinkten Eisenwerkstoffen gering, wenn $S_1 < 0.5$ ist.

 S_2 : Die Wahrscheinlichkeit der selektiven Korrosion bei schmelztauchverzinkten Eisenwerkstoffen (Austrag von zinkhaltigen Partikeln, Zinkgeriesel) ist gering, wenn $S_2 < 1$ bzw. $S_2 > 3$ oder die Nitratkonzentration < 20 mg/l beträgt.

S: Die Wahrscheinlichkeit der Lochkorrosion in Warmwasserleitungen ist bei Kupfer und Kupferwerkstoffen gering, wenn S > 1,5 ist.

Hinweis zur den berechneten Parametern Summe Tetrachlorethen+Trichlorethen, Summe PAK, Nitrat/50+Nitrit/3:

Zur Berechnung werden die tatsächlichen analytisch bestimmten Werte eingesetzt. Werte, die kleiner als die Bestimmungsgrenze sind, werden gleich Null gesetzt.

GW: Grenzwert gem. TrinkwV bzw. Richtwert gem. DIN EN 12502 bzw. DIN 50930.

Anlage zum Prüfbericht: 22-0410263

Korrosionschemische Beurteilung:

Die Korrosionswahrscheinlichkeiten für metallische Werkstoffe in der Trinkwasserinstallation sind als gering anzusehen, wenn die Anforderungen der DIN EN 12502 Teile 1-5 und DIN 50930 Teil 6 eingehalten sind. Vorausgesetzt wird ein ausreichend hoher Sauerstoffgehalt im Versorgungsnetz von mindestens 3,2 mg/l.

Parameter	Einheit	Anforderung	eingehalten
Anforderungen TrinkwV	•		
pH-Wert		≥ 7,7	ja
Calcitlösekapazität	mg/l	oder ≤ 5,0 mg/l (als Calciumcarbonat)	
Korrosionschemische Anforderun	gen nach I	 DIN EN 12502 Teile 1-5 und DIN 50930 Teil 6:	
Gusseisen, niedrig- und unlegierte	Fisenwer	ketoffa:	
, ,			
Schutzschichten unter Ausbildung	gleichmäßig	ger Flächenkorrosion können sich bilden, wenn:	
pH-Wert		> 7,0	ja
Calcium	mg/l	und > 40 mg/l	
Galcium	1119/1	und	
Säurekapazität bis pH 4,3	mmol/l	> 2,0 mmol/l	
Schmelztauchverzinkte Eisenwerk			
Die Wahrscheinlichkeit für Lochkorr	osion ist ge	ering, wenn:	
Quotient S ₁		S ₁ < 0,5 (für S ₁ > 3 ist die Korrosion sehr wahrscheinlich) und	nein
Calcium	mg/l	≥ 20 mg/l und	
Säurekapazität bis pH 4,3	mmol/l	≥ 2,0 mmol/l	
Die Wahrscheinlichkeit für selektive	Korrosion	ist gering, wenn:	
Quotient S ₂		$S_2 < 1$ oder $S_2 > 3$	ja
Nitrat	mg/l	oder < 20 mg/l	
Wahrscheinlich der Freisetzung vor	n Korrosion	nsprodukten ist gering; wenn:	
Säurekapazität bis pH 4,3	mmol/l	≥ 2,0 mmol/l	ja
Basekapazität bis pH 8,2	mmol/l	und ≤ 0,5 mmol/l	
		aterialien wird abgeraten, da die Korrosionswahrsch	 neinlichkeit für
Unabhängig von der Wasserzusamm Eisenwerkstoffe in der Warmwasseri		wird nach einer DVGW-Empfehlung, vom Einsatz v abgeraten.	erzinkter

Kupfer und Kupferlegierungen:						
Die Wahrscheinlichkeit für Lochkorrosion in Warmwasserleitungen ist gering, wenn:						
Quotient S		S ≥ 1,5	ja			
Die Wahrscheinlichkeit für gleichmäß	Die Wahrscheinlichkeit für gleichmäßige Flächenkorrosion ist gering, wenn					
pH-Wert		≥ 7,5	ja			
Säurekapazität bis pH 4,3	mmol/l	und ≥ 1,0 mmol/l				
Wahrscheinlich der Freisetzung von	Korrosion	sprodukten ist gering; wenn:				
pH-Wert		≥ 7,4	ja			
pH-Wert und TOC		oder 7,0 ≤ pH ≤ 7,4 und TOC 1,5 ≤ mg/l				
einzustufen.		Werkstoffen aus Kupfer und Kupferlegierungen sind önnen uneingeschränkt verwendet werden.	als gering			
	, ,					
Nichtrostende Stähle:						
Die Wahrscheinlichkeit für sämtliche	Korrosionsa	arten ist gering, wenn:				
Chlorid	mg/l	< 53,2 mg/l in Warmwasser	nein			
Chlorid	mg/l	< 212 mg/l in Kaltwasser	ja			
Werkstoffe aus nichtrostenden Stählen können in der Kaltwasserinstallation uneingeschränkt verwendet werden, von der Verwendung in der Warmwasserinstallation wird abgeraten						